Evaluation Form for Cell Cycle and Modeling Section

Circle One: Freshman Sophomore Junior Senior

1. The behavior of the cell cycle can only be simulated as a series of multiple protein interactions and biochemical reactions.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

2. The Cell Cycle can be modeled as an oscillating system with as few as two reactions.

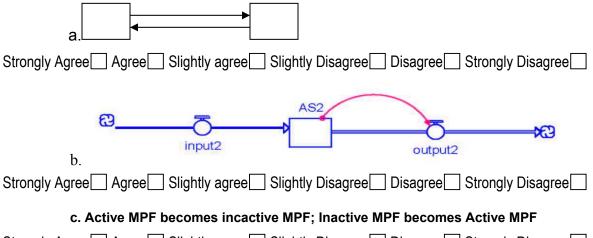
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

3. MPF is a specific term for mitotic promoting activity in mammalian cells.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

4. Proteins in the cell cycle are regulated by phosphorylation and the formation of protein-protein complexes.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree


5. Cyclin degradation is required for cell cycle progression.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

6. Model construction is the same as concept mapping.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

7. The following are examples of closed systems

 8. The following are needed to make a mathematical model of the cell cycle: a. All known interacting proteins
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
b. A feedback loop
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
c. Rate equations
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
d. Differential equations
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
e. Rate constants
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
f. Exact concentrations
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
9. If concentrations of metabolites are changed, the results of the simulation will vary accordingly.
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
10. If the rate laws for the reactions are changed, the results of the simulation will change.
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree
44 It's impossible to get the same simulation results from two different Stalls

11. It's impossible to get the same simulation results from two different Stella maps.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

12. A good model includes everything we know about the biology

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

13. A good model accurately reflects the mechanisms of the protein interactions.

Evaluation Form for Cell Cycle and Modeling Section

14. The following are examples of topological singularities:

a. Mitotic spindle

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

b. Cell division

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

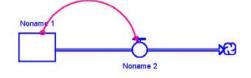
c. Budding in yeast

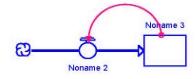
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

d. Greenwich time line

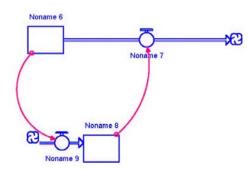
Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

15. A closed system has no loss or mass

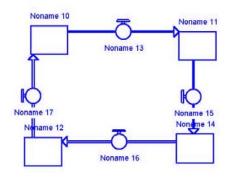

a.


Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

16. An open system allows mass in but not out


Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

17. The following topologies created in Stella could have oscillations



Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

d.

C.

Strongly Agree Agree Slightly agree Slightly Disagree Strongly Disagree

18. The same dynamic behaviors can be obtained whether you use mass action or Michaelis-Menten.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

19. A protein threshold is the maximum concentration value it reaches

Strongly Agree Agree Slightly agree Slightly Disagree Strongly Disagree

20. Thresholds are defined in relation to time

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

21. I would have understood the project better if we had exercises for setting up laws of mass action.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

22. Models have to include exact numbers from experiments in order to infer anything about how the biology works.

23. Modeling papers include all the information needed to create a model in the classroom.

Strongly Agree Agree Slightly agree Slightly Disagree Disagree Strongly Disagree

Feel free to use the space below to make any additional comments or suggestions.